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Summary. - -  As suggested by an extension of the supersymmetric Wess- 
Zumino model to higher dimensions we consider the eigenvalue problem for 
the Hamiltonian p4+ V(r), where V is either a ~ function or the Coulomb 
potential (which happens to be the Green's function for the bilaplacian in five 
dimensions). 

PACS 03.65.Ge - Solutions of wave equations; bound states. 

1. - I n t r o d u c t i o n .  

F o r  several  reasons, it is interest ing to consider differential equations of 
o rder  higher  than the second. For  example, they appear  in discussions of 

(*) To speed up publication, the authors of this paper have agreed to not receive the 
proofs for correction. 
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quantum gravity(I). Also in an extension of supersymmetric Wess-Zumino 
model to higher dimensions, a generalized Klein-Gordon equation of the form 

(1) [[] 2~-2 + m 2~-~] T = 0, 

was obtained (2.3). 
This equation, for d = 4, gives the usual Klein-Gordon equation and for d = 6 it 

gives 

(2) [3 O T +  m4~F= 0. 

Several arguments have been advanced to try theories in spaces of higher 
dimensions. Once they have been accepted into the game then, for the reasons 
mentioned above, higher-order equations might also be considered in it. 

Therefore, it. is justified to try to gain some experience about physical 
properties of systems obeying higher-order equations. We do not intend to take 
a mathematical point of view (see ref. (4)); our aim here is rather to discuss some 
examples that could be of physical interest. 

To go from the higher-order Lagrangians to a Hamiltonian system would 
require a detailed analysis. In order to simplify matters we will assume the 
following equation for stationary states: 

(3) He = E~ 

with 

(4) H = V 2 V 2 + V(r), 

and we will discuss this equation for some potentials V(r) and for spherically 
symmetric solutions. 

In sect. 2, in order to illustrate the main line of the method, we revisit the 
usual hydrogen atom. 

In sect. 3, we discuss the case in which V(r) is a ~ function. 
In sect. 4, the potential V(r) = - air is considered. This is the Green's function 

of the bilaplacian operator in five dimensions. 
In sect. 5, boundary conditions are discussed. Finally, in two appendices we 

show briefly an equation of the fourth order with solutions similar to that of the 
usual harmonic oscillator and elaborate on the conditions of self-adjointness. 

(~) S. W. HAWKING: preprint University of Cambridge, Department of Applied 
Mathematics and Theoretical Physics (September 1985). 
(2) C. G. BOLLINI and J. J. GIAMBIAGI: Phys. Rev. D, 32, 3316 (1985). 
(3) R. DELBURGO and V. B. PRASAD: J. Phys. G, 1, 377 (1975). 
(4) W. W. ZACHARY: g. Math. Anal. Appl., 117, 449 (1986). 
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2. - The  h y d r o g e n  a t o m  revis i ted.  

In order to illustrate the method we shall follow for the fourth order, 
we first consider the usual second-order SchrSdinger equation for the spherically 
symmetric solutions of the hydrogen atom 

E (5) ( - W - r ) ~ =  q~, 

which, with ,~ = x/r, can be written as 

(6) d2z 

We shall use the Laplace transform (L) 

(7) z(r) = ~ f exp [pr] r dp, r = ] exp [ - pr] ~(r) dr. 
0 

We look for a solution with physical boundary conditions 

(8) Z(0) = 0, ~(0) = 1. 

Taking into account that (res (5), p. 129) 

L ( l ~ ( r ) ) =  f C(p')dP ' , (9) 

we get for r 

(lO) p2r + a J r dp' + EC(p) = 0 
p 

and after taking the derivative, 

E) d~ + (2p - ~) r = (11) (p2 + 0 

which on integration leads to 

1 p 
(12) r  p2------~ kP + i V Y - ]  ' 

\ / 

which is valid for any real E. 

(5) Bateman Manuscript Project: Tables of Integral Transforms, Vol. 1 (McGraw-Hill 
Book Co. Inc. New York, N.Y., 1954). 
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For  E < 0 it is convenient to write (12) in the form 

_ 

(13) r p _--~I~E i ~ p + ]-~i-a] 

where  we used E = - I E ]. 
The Laplace anti t ransform (L -1) of ( p -  ~)a~(p-  ~2) a is (ref. (s), p. 238) 

r-~,-a-~ exp [~ r] 
(14) L-~[(p  - ~l)~,(p - ~2) ~] - , XlFl(-fl2; - / ~  -fl~; (~2 - ~,)r) .  

[ ' ( -  fil - -  ~2) 

To find out which values of E correspond to eigenfunctions we must  look for the 
behavior of 1F~ as r---) oo. We have, for the asymptotic behaviour of 1F1 (ref. (8), 
p. 278) 

(15) 1F1(- f12; --/~2 --/~1 ; 2[El ~2 r) = F ( -  ~ - fl~)(21Elm r)~ exp [21E I '~ r] 
r ( -  &) 

where  we used 21 = - IEI la and ~2 = ]El '~. Thus, for r o  0% 

r-~-I exp [IEIlar]. (16) z(r)---) (2]E I1~)~' F ( -  f12--------~ 

This shows that  z (r )  diverges unless we have fie = n, where n is a nonnegative 
integer.  That  is, from (13), 

6~ 
(17) f12-21Eil~ 1 - - n  

o r  

6{ 2 
(18) E -  for n = 0 ,  1 ,2 , . . . .  

4(n + 1) 2 

In short, the asymptotic behaviour can be directly obtained by noting that  the 
behaviour for large r is dominated by the singularity ( p -  ~()~ which has the 
largest  real part  of ~. 

In fact, 

(19) L - ' ( p  - ~)~ - 
exp [),r] 

F ( -  ~) r ~.1' 

which leads formally to (17) and (18). 

(6) B a t e m a n  Manuscr ip t  Project." Higher Trascendental  Funct ions ,  Vol. 1 (McGraw-Hill 
Book Co. Inc. New York, N.Y., 1953). 
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With positive E,  the singularities appear on the imaginary axis (see (12)) and 
this leads to scattering states for any value of E > 0. 

I t  is worth noting that  eq. (11) gives information about the locations of 
singularities and  energy eigenvalues even without knowing its explicit solutions. 
We assume that  near a singularity ~, r has the form 

(20) r = (p  - ~)~ + O ( ( p  - ~)~+1) . 

Replacing in (11) we have 

(21) [(p _ ~)2 + 2~(p - ~) + 22 + E ] f l ( p  - ~)~-~ + 212(p - ~() + 2~ - a](p - ~)z = 0. 

Disregarding (p-)~)fl~-I we get 

(22) 2 2 = _ E ,  ~ _ a  
2 ( f l + l ) "  

When the energy is positive, these singularities are located on the imaginary 
axis giving the scattering states. When the energy is negative, the singularities 
lay on the real axis at ~ = ___ IEI 1~. In order to avoid the singularity on the right- 
hand side plane, fl should be chosen equal to a positive (or zero) integer leading to 
form (17). 

Going back to (8) we want to point out that  r goes to zero like 1/p 2 when 
IPl---) ~.  As it has no poles on the right-hand side of the p-plane, for r = 0 one can 
close the integration path in (7) with a semicircle to the right. We then see that  
x(0) = 0, but ~(0) ~ 0. 

3.  - ~ - f u n c t i o n  p o t e n t i a l .  

We now want  to find the spherically symmetric solution of the equation 

(23) V 2 V 2 ~ - ~'~(r) ~ = E,~. 

We first look for a solution of (23) which outside the origin is a , , f ree, ,  equation. 
The boundary conditions at r = 0 are left open so as to able to adjust them to 
generate  the ~-function potential. 

We choose ~ = x / r  and obtain for r r 0 

(24) d4x 
dr* - E X .  

Taking the Laplace transform we get (ref. (~), p. 129) 

(25) (p4 _ E) r = p3x(0) + p2z'(0) + pz"(0) + z"(0) �9 
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I f  X(0)r 0, then ~ has a 1/r singularity. Since VE(1/r)~ ~(r) and V 2 V2(1/r)= V2~ 
this leads to a singularity not contained in eqs. (23) or (24); so we must  impose 
x(0) = 0, that  is 

(26) ~(0)=X'(0). 

Thus, in (25) we drop the p3 te rm and obtain 

(27) 
p2x'(0) + PX"(0) + Z'(0) 

r - (P - ~I)(P - ~e)(P - ~s)(P - 2~) ' 

where the ~i are the four roots of the equation 

(28) )~ = E .  

Le t  us first look for solutions with negative E = -  [E[. Explicitly, 

(29) f 
).1 = 1 +_~ jEll/4, )~2 ---- ~.~', 

).s -- -- 1 + /  jEll/a, ~.4 = 2~'- 

We have seen that  singularities in the right-hand plane generate solutions which 
increase exponentially for large r. So we must  eliminate them in eq. (27). These 
correspond to ~1 and ~2; t h e n  we choose the constants in such a way that  

(30) p2x ' (0 )  + px"(0) + Z"(0) = C(p - )~I)(P - X2), 

which leads to 

(31) z'(o) = c ,  z"(o) = - c Y ~  [E[ 1~', z"(0) = C[EI 1~. 

With these values we get  

C 
(32) r = (P - )~s)(P - )~4) 

whose anti-Laplace transform is (ref. (5), p. 229) 

C 
(33) x(r) - - -  (exp [~s r] - exp [~4 r]). 

23 - 24 
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That is, 

(34) 

Now we have 

sin 
W(r) -- IEI,~, r exp V ~ V ~ 

r .  

V~X = /V21 \  1 d2z (35) 
r [ r )  X + r  dr 2" 

The first term of (35) drops out as Z(0)= 0 and we are left with 

; rr 

From here, 

(37) 
(1 d2z~ ( V 2 1 / d z x  1 d'z 

V2 V2 ~-r = V~ -d-~r 2 ] = \ r ]  & ~ r dr 4" 

Comparing with (23) we have 

= _ 4 Z"(0) Z"(0) _ 4=V2 IEI ''4, (38) ~ ( 0 ) -  4~x'(0) = 

from which 

(39) ]El 1/4 - 
4 ~ V 2 '  

which is possible only if ~ > 0 (attractive potential). We also see that  there is only 
one eigenvalue for each positive ~: 

~4 
(40) E - 

4(4=) 4" 

For E > 0, the singularities are at 

(41) 21 = E 1/4 , 22 = - 2 1 ,  23 - -  i21 ,  24 ~- - i21 .  

Now, if in (27) we choose the quadratic form in the numerator so as to eliminate a 
couple of roots we arrive at an inconsistency. Namely, if we eliminate the two 
real roots or the two imaginary ones, then 

(42,) x"(O) = - C (2~  + 2 0  = 0 

39 - II Nuovo Cimento A. 
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and so it is not possible to get  a ~-function like in (36). On the other hand, if we 
choose to eliminate one real and one imaginary root we are led to a complex value 
for 'a .  

We cannot avoid, however, eliminating the positive root (as it will, otherwise, 
imply an exponentially increasing function), so we choose 

(43) P2X'(0) + pz"(O) + Z~'(0) = O(p - a)(p - ~1) , 

where the real parameter  a should be different from ),1 or ~2. Now 

Z'(0) = O, z"(0) = - O(a + ~1), Z"(0) = Oa~l (44) 

and 

(45) r = 
O(p - a) 

(p - ~,2)(p - ~ .3)(P - -  )~4) '  

whose Laplace transform is (ref. (5), p. 230): 

(46) x(r) = K exp [/z](exp [ -  11 r] - exp [i11 r]) + 

+ K e x p  [i~](exp [ -  11 r] - exp [ -  i i l  r]),  

where r and ~ are arbi t rary phases. From (46) we get  

(47) a = - 4= z"(0) _ 8=),1 
z'(0) 1 - t g ( r  8)/2" 

We see from (47) that  the s trength of the ~-function potential determines the 
phase difference of both terms in (46). We also see that  the solution exists for any 
sign of ~. 

4. - T h e  o p e r a t o r  p4_ ~/r. 

Note that  1/r is the Green's function in five dimensions of the operator V 2 V 2. 
We now deal with the equation 

(48) 

With qJ = z / r  we obtain 

(49) 

6C 
V 2 V 2 ~ - r  ~ =  E ~.  

d ' z  
dr  4 r ~ = EX 

with •(0)= X"(0)= 0 to avoid ~-functions at the origin (see sect. 3.). 
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For  the time being, and for reasons of simplicity, we also take x'(0) = 0. With 
these initial conditions the Laplace transform of (49) is (after taking a derivative 
d/dp) 

(50) (p4 _ E ) d ~  + (4p~ + a) r = 0. 

Compare with (11) an, I note the differences in the sign of E and a. To get  a 
qualitative idea of th~ [~roblem we follow the analysis used at the end of sect. 2. 
We assume 

(51) r = (p - 1) 8 + O((p - i )  ~+') 

and substi tute in (50) 

(52) (p4 _ E ) ~ ( p  - )~ ) f l - '  -~ (4p 3 + a)(p -- i)  8-1 = O. 

So, near p ~ i we obtain the conditions 

14 = E  

and 

(53) 413 + ~ + 413 ~ = O, 

i.e. 

(54) )s _ 
4(fi + 1)" 

Now, if E < 0 we have 

(55) 11 = 1 + i  [E[,/4, t2--i1", 13-  -1+___~/IEI1;,, 14 = 1~'. 

It  is verified that  ~ is another root ~j which leads through (54) to a complex value 
of ft. Then the exponential growth of z(r) for r ~  ~ cannot be avoided. So there is 
no solution for eq. (50) with negative E and normalizable x(r) with the assumed 
initial conditions. On the other hand, if E is positive we have 

(56) 21 = E TM , ),2 = - -  1 1 ,  1 3  : i E 1 / 4 ,  ~ 4  : - ~ 3 .  

The dominant singularity corresponds to 11 (largest real part). This singularity 
can be avoided only if a < 0 (see (54)) (repulsive potential) in which case eq. ( ~ )  
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gives 

(57) E~4_ I=1 
4( f l+ l ) '  

and choosing/~ integer (see discussion in sect. 2) 

(58) E ,  \ 4 ( n + l ) ]  " 

However ,  af ter  this choice we still have ;~3 and ;~4 on the imaginary axis and the 
corresponding asymptotic behaviour is now dominated by the waves  exp [;(3 r] 
and exp [;~4 r]. In the one-dimensional case this corresponds to the s ta tes  of ,,total 
reflexion,, (see ref. (7)). 

As a ma t t e r  of fact we can write the explicit solution of (50): 

(59) r = C(p - ;~1) ~: (p - ~ 2 )  ~ (p - ;~3) ~ (p - ~ 4 )  ~4 , 

where  

(60) fl, = - -  ~ -- I. 

The inverse Laplace t ransform is (ref. (1), p. 238) 

(61) ;~(r) = r 3 ~2(-  ill, - f12, - f13, - f14; 4; ;~1 r, ;~2 r, ;~3 r, ;~4 r).  

where  ~2 is defined in ref. (6) (p. 235). By studying the asymptotic behaviour of 
~2, which is cumbersome and uninteresting, we arrive at the same conclusions 
already mentioned. 

Formula  (59) and (60) together  with (55) and (56) show that as there  are no 
poles on the right-hand side in (7) we can close the integration by a semicircle on 
the right, giving 9~(0) = 0. The same argument  holds for X'(0) = 0 and X"(0) = 0 but  
not for ;~(0). The reason is that  the integrand vanishes like 1/p 4. 

5. - M o d i f i e d  b o u n d a r y  c o n d i t i o n s .  

The condition Z(0)= 0 has to be imposed to avoid a V2~(r) singularity. A 
similar argument  is valid for X"(0) = 0 which otherwise leads to ~ singularities. On 
the other  hand, ;~'(0) and ;~"(0) should be left as arbi t rary constants. In the 
previous section we choose X'(0)= 0 for simplicity reasons. We now drop this .  
requirement .  

($ C. G. BOLLINI and J. J. GIAMBIAGI: Nuovo Cimento A, 98, 151 (1987). 
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Taking into account eq. (25) we now get  instead of (50) the inhomogeneous 
equation 

(62) (p4 _ E) d~ + (4p3 + a) r = 2X'(0)p = 2Ap.  

The general solution of (62) is (ref. (8), p. 16) 

(63) 

where  

(64) 

r = exp [ - F ( p ) ]  V + dxg(x) exp [F(x) , 

P 

( 4x3 + a dx 2Ap 
F(p) = ~ and g(P) - 12---E " 

However  eq. (63) is only a formal solution. We can obtain an eigenvalue condition 
as follows. For  negative energy E = -  e 4 and using the transformation x = re, 
eq. (49) can be wri t ten in the form 

(65) d4x 
dx4 ( x - l ) ) ~ = 0 ,  

where  • = ale s. In the p-space it becomes an integral equation 

(66) (p4 + 1) r - • J r dp' = Ap + B ,  
p 

where  A = Z'(0) and B = Z'(0). 
Since r must  be regular  at p = ~1 and ~2 (where ~1,2 = (1 _+ i ) /V2)  in order to 

get  the correct behaviour of x(r) for r -~  ~ (see sect. 2), we have from eq. (66): 

(67) A~21 + B + • J r dp' = 0, 
"11 

(68) A~ 2 + B + • f r dp' = 0, 
"12 

and substract ing we obtain the eigenvalue equation we were  looking for 

,12 

(69) ~Ai + • f r dp' = 0, 
11 

where  we can put the normalization constant A = 1. 

(8) E. KAMKE: Differentialgleichungen (Chelsea Publ. Co., 1971). 
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Numerical integration of (62) together with (69) yields for the ground state 

E = - 0.3626 4~ 

and for the first excited state 

E '  = - 0.114 4~.  

6 .  - D i s c u s s i o n .  

The bilaplacian (p4) equation has a peculiar behaviour when compared with 
the usual p2 equation. The attractive ~-function potential has no negative 
eigenvalue, no bound state, in the p2 case, while it has always one and only one 
for the p4 case. 

Furthermore, we get a solution for any positive value of E and for any sign of 
coupling constant a. It is a combination of imaginary exponentials plus 
exponentially decreasing functions as shown explicitly in eq. (46). In order to 
produce a ~-function behaviour at the origin it is essential to have x"(0)r 0. 

The potential a/r is more involved. For the initial conditions X(0) = 
= X'(0) = X"(0) = 0 there are no negative eigenvalues. On the other hand, if E is 
positive, with 

(65) E~ [4(n + 1)] 

(a discrete set of infinite eigenvalues!) then, the solutions behave like incoming 
and outgoing waves. They correspond to the solutions for ,,total reflexiom) 
discussed in ref. (7). For any other values of E > 0  one cannot avoid the 
exponential increase for r---)~. 

Using a variation method, Perez (9) has proved that there are infinite negative 
eigenvalues provided X'(0) r 0. 

We are indebted to Dr. F. Perez for encouraging discussions. 

APPENDIX A 

We want to mention a particular example of a fourth-order self-adjoint 
equation whose eigensolutions are similar to those of the second-order harmonic 

(9) F. PEREZ: Inst. de Fisica, Univ. de Sao Paulo, private communication. 
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oscillator: 

(A.1) dr  4d4---~r - 2 ~ r  ( r 2 - ~ ) + r 4 r 1 6 2 1 6 2  

Defining 

(A.2) y .  = r ~ exp [ -  r 2 / 2 ] ,  

we easily obtain 

(A.3) Py~ = [ 4 ( n  2 + n) + 3] y~ - 2 n ( 2 n  2 - 3n + 1) Y~-2 + 

so we have 

(A.4) py, ~ m = a,~ y~,  
m-1  

where  

(A.5) 

We call r the solution of 

(A.6) 

With 

(A.7) 

we have 

(A.8) 

Then, 

(A.9) 

For  l = n we obtain 

(A.10) 

and thus 

(A.11) 

I a ~.=E. =4n(n+ 1) + 3 ,  

a n  ~ - 2  ---- - -  2n(2n 2 - 3n + 1), 

a _4_ n!. .  
- -4) :  

Pr162 

r E A~ yz, 
l - I  

l 

Pr ~A~ ~ arym:E, ~ A'~ym. 
1=1 m=l  m: : l  

} ~ I-E,A~ y~= . ~A,a~ 0 
l=l  [ s=t 

n rt n A~ a~ - E~ A~ = 0 

E n - -  ?t - -  a n 

+ n(n - 1)(n - 2)(n - 3) Y~-4, 

w h e r e  E n  =- 4n(n + 1) + 3. 

(identity) 
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and we can set  arbi trar i ly A~ = 1. Fo r  1 = n -  2 we get  

(A. 12) A~ -2 - a~-2 
E ,  - E , -2 '  

for  / = n - 4 ,  

(A.13) 

and so on. 

n - 4  _ n - 4  _t_ A n - 2  ~ n - 4  A~ (E~ - E~-4) - a~ 7- ~ ~ - 2 ,  

A P P E N D I X  B 

The conditions at r =  0 which must  be imposed on any two a rb i t ra ry  
eigenfunctions Zl, Xz of the Hamiltonian to secure the hermit ici ty of the opera tor  
d4/dr 4 are 

(B.1) t t  0 t t t t  Xl(0) ~ ' ( 0 )  -- X~(0) Z2(0) "b Xl( ) X2(0) -- Xl(0) Z2(0) = 0 .  

In the case of the ~-function we put  X~(0) = 0, and the first two te rms  of (B. 1) 
vanish. The remaining two te rms cancel each other  in vir tue of the conditions 
(38) and (47). So, it is not necessary to have z"(0)= 0. 

In the case of the Coulomb potential  (B.1) is automatically satisfied by 
imposing the physical conditions X(0)= z"(0)= 0. 

�9 ~ I A S S U N T O  (*) 

Come ~ suggerito da un'estensione del modello supersimmetrico di Wess-Zumino a 
dimensioni superiori, si considera il problema dell'autovalore per l'hamiltoniana p4 + V(r), 
dove V ~ una funzione ~ o il potenziale di Coulomb (che si d~ il caso sia una funzione di 
Green per il bilaplaciano a cinque dimensioni). 

(*) Traduzione a cura della Redazione. 

Pe31oMe He I10.uyqeHO, 


